Determining the pH of the contents in a flask in a titration scenario... (Ignoring any effect of water)

## strong acid analyte / strong base titrant

HX + MOH  $\rightarrow$  H<sub>2</sub>O + MX (neutral salt)

| What's in your dish?                                 | HX           | OH- | $\rightarrow$ | H <sub>2</sub> O | Х- | pH determined by?                                                      |
|------------------------------------------------------|--------------|-----|---------------|------------------|----|------------------------------------------------------------------------|
| Before titration                                     | $\checkmark$ |     |               |                  |    | pH = -log[H+]                                                          |
| During titration, but<br>before equivalence<br>point | V            |     |               | $\checkmark$     | V  | Stoichiometry – calculate the remaining [HX],<br>then<br>pH = -log[H+] |
| At equivalence point                                 |              |     |               | $\checkmark$     | V  | Only neutral products –<br>pH = 7                                      |
| After equivalence<br>point                           |              | V   |               | $\checkmark$     | V  | Determine excess [OH-], then<br>pH = 14 - pOH                          |

## weak acid analyte / strong base titrant

HA + OH-  $\rightarrow$  H<sub>2</sub>O + A- (conjugate base)

| What's in your dish?                                 | HA | OH-          | $\rightarrow$ | H <sub>2</sub> O | A- | pH determined by?                                                                                              |
|------------------------------------------------------|----|--------------|---------------|------------------|----|----------------------------------------------------------------------------------------------------------------|
| Before titration                                     | V  |              |               |                  |    | K <sub>a</sub> problem;<br>K <sub>a</sub> = x <sup>2</sup> /[HA]<br>pH = -log x                                |
| During titration, but<br>before equivalence<br>point | V  |              |               | $\checkmark$     | V  | Buffer formation<br>pH = pKa + log[A-]/[HA]                                                                    |
| At equivalence point                                 |    |              |               | $\checkmark$     | ٦  | Only products: conjugate base and water<br>$K_b$ problem;<br>$K_b = x^2/[A-]$<br>pOH = -log x<br>pH = 14 - pOH |
| After equivalence<br>point                           |    | $\checkmark$ |               | $\checkmark$     | V  | Determine excess [OH-], then<br>pH = 14 - pOH                                                                  |

## weak base analyte / strong acid titrant

 $B + HX \rightarrow X- + HB^{+}$  (conjugate acid)

| What's in your dish?                                 | В | ΗХ | $\rightarrow$ | Х- | HB⁺ | pH determined by?                                                                                                           |
|------------------------------------------------------|---|----|---------------|----|-----|-----------------------------------------------------------------------------------------------------------------------------|
| Before titration                                     | 4 |    |               |    |     | K <sub>b</sub> problem;<br>K <sub>b</sub> = x <sup>2</sup> /[B]<br>pOH = -log x<br>pH = 14 - pOH                            |
| During titration, but<br>before equivalence<br>point | V |    |               | V  | V   | Buffer formation<br>pH = pKa + log[HB+]/[B]                                                                                 |
| At equivalence point                                 |   |    |               | 4  | V   | Only products: conjugate acid and water<br>K <sub>a</sub> problem;<br>K <sub>a</sub> = x <sup>2</sup> /[HB+]<br>pH = -log x |
| After equivalence<br>point                           |   | √  |               | √  | 1   | Determine excess [HX], then<br>pH = -log [H+]                                                                               |

